| | | | | Total printed pages 02 | |---|--|--|---|-----------------------------------| | Name: | R. No | _Class/ Sec: | Date: | Invig. Sign | | MM: 100 | ATOMIC ENE | RGY CENTRA | L SCHOOL, N
Y EXAMINATIO | ARORA
N 2018-19
TIME: 3 Hr. | | Use Blu Question Question Question | ctions: stions are compulsory nic devices are prohib le or Black Pen only. on Nos. 1 to4 are 1 mai on Nos. 5 to 12 are 2 m on Nos. 13 to 23 are 4 on Nos. 24 to 29 are 6 | ited to use in the e
k each .
narks each .
marks each | entioned in front c
examination. | | | 3: Evaluat4 Write th | e principal value of co
A of order 3 x 3 has
e | determinant 5 ,find find the diff. equation | $d \mid 3 A \mid$ $d^2 v/dx^2 + \sqrt{(dv/d)}$ | x) =0 | | 7: Find the 8: Evalua 9: If a * 10: Evalua 11: Evaluate 12: If y = sin(13 Prove th is an eq | uivalence relation | the curve y = * 2) * 1 Ix ned by (a, b) R (a) | 5 x³ + 3 , at x = | $-c$ on the set of $N \times N$ | | 14: Using pr | operties of determina (a- b) (b -c) (c - a) | nt prove that (a + b +c) | 1 1 1
a b c
a ³ b ³ c | 3 | | 16: Solve the 17: Solve the Find the | te ∫√(tan x) dx he diff. equation (x² e diff. equation sin x e interval in which fur sing or decreasing | $-y^{2}$) dx + 2xy d
(dy/dx) + y cos | $dy = 0$ $x = \cos x \sin^2 x$ | v | | | tan x – sir | I X | | | - Find the equation of tangent $16 \times ^2 9y^2 = 144$ at the point(h, k) 20: - Sole the equation $\tan^{-1} [(-1+x)/(-2+x)] = \pi/4 \tan^{-1} (1+x)/(x+2), 0 < x < 1$ 21: - Form a diff. equation for the curve $y = A e^{3x} + B e^{-4x}$ 22: 23: - Using matrix solve the following equations x 2y + z = -4, 2x + 3y + 3z = 5, - Evaluate $\int (x^2 + 5x) dx$ as limit of a sum 24: - $\pi/2$ 25: Evaluate ∫ log cos x dx - Find the area of the reason enclosed between two circles $x^2 + y^2 = 4$ 26: - Show that the volume of the greatest right cylinder that can be ins cribbed in 27: a cone of height h and semi vertical angle θ is (4/27) π h^3 tan^2 θ - If the sum of the length of the hypotenuse and a side of a right angled is 28: given, show that the area of the triangle is maximum when the angle between them is $\pi/3$. - Using the method of integration , find the area of the region bounded by the 29: lines 2x + y = 4, 3x - 2y = 6 and x - 3y + 5 = 0